Block relaxation and majorization methods for the nearest correlation matrix with factor structure

نویسندگان

  • Qingna Li
  • Houduo Qi
  • Naihua Xiu
چکیده

We propose two numerical methods, namely the block relaxation and majorization method, for the problem of nearest correlation matrix with factor structure, which is highly nonconvex. In the block relaxation method, the subproblem is of the standard trust region problem, which is solved by Steighaug’s truncated conjugate gradient method or by the trust region method of [21]. In the majorization method, the subproblem has a closed-form solution. We then extend the majorization method to the case where nonnegative factors are required. The numerical results confirm that the proposed methods worked quite well and are competitive against the best available methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Diagonal Majorization on $C_{0}$

Let $mathbf{c}_0$ be the real vector space of all real sequences which converge to zero. For every $x,yin mathbf{c}_0$, it is said that $y$ is block diagonal majorized by $x$ (written $yprec_b x$) if there exists a block diagonal row stochastic matrix $R$ such that $y=Rx$. In this paper we find the possible structure of linear functions $T:mathbf{c}_0rightarrow mathbf{c}_0$ preserving $prec_b$.

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Linear preservers of g-row and g-column majorization on M_{n,m}

Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...

متن کامل

Compatibilization of polycarbonate/poly (ethylene terephthalate) blends by addition of their transesterification product

In this study, poly carbonate (PC) and poly (ethylene terephthalate) (PET) were reactive melt-blended under two different conditions to produce PC/PET copolymers. For each condition, samples were taken at specified mixing times representative a specific structure of copolymers and each one employed to physically compatibilize a PC/PET blend with a fixed composition. Reactive blending and copoly...

متن کامل

On linear preservers of sgut-majorization on $textbf{M}_{n,m}$

Abstract. Let Mn;m be the set of n-by-m matrices with entries inthe field of real numbers. A matrix R in Mn = Mn;n is a generalizedrow substochastic matrix (g-row substochastic, for short) if Re e, where e = (1; 1; : : : ; 1)t. For X; Y 2 Mn;m, X is said to besgut-majorized by Y (denoted by X sgut Y ) if there exists ann-by-n upper triangular g-row substochastic matrix R such thatX = RY . This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2011